1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
#[cfg(all(tokio_unstable, feature = "tracing"))]
use crate::time::driver::ClockTime;
use crate::time::driver::{Handle, TimerEntry};
use crate::time::{error::Error, Duration, Instant};
use crate::util::trace;
use pin_project_lite::pin_project;
use std::future::Future;
use std::panic::Location;
use std::pin::Pin;
use std::task::{self, Poll};
/// Waits until `deadline` is reached.
///
/// No work is performed while awaiting on the sleep future to complete. `Sleep`
/// operates at millisecond granularity and should not be used for tasks that
/// require high-resolution timers.
///
/// To run something regularly on a schedule, see [`interval`].
///
/// # Cancellation
///
/// Canceling a sleep instance is done by dropping the returned future. No additional
/// cleanup work is required.
///
/// # Examples
///
/// Wait 100ms and print "100 ms have elapsed".
///
/// ```
/// use tokio::time::{sleep_until, Instant, Duration};
///
/// #[tokio::main]
/// async fn main() {
/// sleep_until(Instant::now() + Duration::from_millis(100)).await;
/// println!("100 ms have elapsed");
/// }
/// ```
///
/// See the documentation for the [`Sleep`] type for more examples.
///
/// # Panics
///
/// This function panics if there is no current timer set.
///
/// It can be triggered when [`Builder::enable_time`] or
/// [`Builder::enable_all`] are not included in the builder.
///
/// It can also panic whenever a timer is created outside of a
/// Tokio runtime. That is why `rt.block_on(sleep(...))` will panic,
/// since the function is executed outside of the runtime.
/// Whereas `rt.block_on(async {sleep(...).await})` doesn't panic.
/// And this is because wrapping the function on an async makes it lazy,
/// and so gets executed inside the runtime successfully without
/// panicking.
///
/// [`Sleep`]: struct@crate::time::Sleep
/// [`interval`]: crate::time::interval()
/// [`Builder::enable_time`]: crate::runtime::Builder::enable_time
/// [`Builder::enable_all`]: crate::runtime::Builder::enable_all
// Alias for old name in 0.x
#[cfg_attr(docsrs, doc(alias = "delay_until"))]
#[track_caller]
pub fn sleep_until(deadline: Instant) -> Sleep {
return Sleep::new_timeout(deadline, trace::caller_location());
}
/// Waits until `duration` has elapsed.
///
/// Equivalent to `sleep_until(Instant::now() + duration)`. An asynchronous
/// analog to `std::thread::sleep`.
///
/// No work is performed while awaiting on the sleep future to complete. `Sleep`
/// operates at millisecond granularity and should not be used for tasks that
/// require high-resolution timers. The implementation is platform specific,
/// and some platforms (specifically Windows) will provide timers with a
/// larger resolution than 1 ms.
///
/// To run something regularly on a schedule, see [`interval`].
///
/// The maximum duration for a sleep is 68719476734 milliseconds (approximately 2.2 years).
///
/// # Cancellation
///
/// Canceling a sleep instance is done by dropping the returned future. No additional
/// cleanup work is required.
///
/// # Examples
///
/// Wait 100ms and print "100 ms have elapsed".
///
/// ```
/// use tokio::time::{sleep, Duration};
///
/// #[tokio::main]
/// async fn main() {
/// sleep(Duration::from_millis(100)).await;
/// println!("100 ms have elapsed");
/// }
/// ```
///
/// See the documentation for the [`Sleep`] type for more examples.
///
/// # Panics
///
/// This function panics if there is no current timer set.
///
/// It can be triggered when [`Builder::enable_time`] or
/// [`Builder::enable_all`] are not included in the builder.
///
/// It can also panic whenever a timer is created outside of a
/// Tokio runtime. That is why `rt.block_on(sleep(...))` will panic,
/// since the function is executed outside of the runtime.
/// Whereas `rt.block_on(async {sleep(...).await})` doesn't panic.
/// And this is because wrapping the function on an async makes it lazy,
/// and so gets executed inside the runtime successfully without
/// panicking.
///
/// [`Sleep`]: struct@crate::time::Sleep
/// [`interval`]: crate::time::interval()
/// [`Builder::enable_time`]: crate::runtime::Builder::enable_time
/// [`Builder::enable_all`]: crate::runtime::Builder::enable_all
// Alias for old name in 0.x
#[cfg_attr(docsrs, doc(alias = "delay_for"))]
#[cfg_attr(docsrs, doc(alias = "wait"))]
#[track_caller]
pub fn sleep(duration: Duration) -> Sleep {
let location = trace::caller_location();
match Instant::now().checked_add(duration) {
Some(deadline) => Sleep::new_timeout(deadline, location),
None => Sleep::new_timeout(Instant::far_future(), location),
}
}
pin_project! {
/// Future returned by [`sleep`](sleep) and [`sleep_until`](sleep_until).
///
/// This type does not implement the `Unpin` trait, which means that if you
/// use it with [`select!`] or by calling `poll`, you have to pin it first.
/// If you use it with `.await`, this does not apply.
///
/// # Examples
///
/// Wait 100ms and print "100 ms have elapsed".
///
/// ```
/// use tokio::time::{sleep, Duration};
///
/// #[tokio::main]
/// async fn main() {
/// sleep(Duration::from_millis(100)).await;
/// println!("100 ms have elapsed");
/// }
/// ```
///
/// Use with [`select!`]. Pinning the `Sleep` with [`tokio::pin!`] is
/// necessary when the same `Sleep` is selected on multiple times.
/// ```no_run
/// use tokio::time::{self, Duration, Instant};
///
/// #[tokio::main]
/// async fn main() {
/// let sleep = time::sleep(Duration::from_millis(10));
/// tokio::pin!(sleep);
///
/// loop {
/// tokio::select! {
/// () = &mut sleep => {
/// println!("timer elapsed");
/// sleep.as_mut().reset(Instant::now() + Duration::from_millis(50));
/// },
/// }
/// }
/// }
/// ```
/// Use in a struct with boxing. By pinning the `Sleep` with a `Box`, the
/// `HasSleep` struct implements `Unpin`, even though `Sleep` does not.
/// ```
/// use std::future::Future;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
/// use tokio::time::Sleep;
///
/// struct HasSleep {
/// sleep: Pin<Box<Sleep>>,
/// }
///
/// impl Future for HasSleep {
/// type Output = ();
///
/// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
/// self.sleep.as_mut().poll(cx)
/// }
/// }
/// ```
/// Use in a struct with pin projection. This method avoids the `Box`, but
/// the `HasSleep` struct will not be `Unpin` as a consequence.
/// ```
/// use std::future::Future;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
/// use tokio::time::Sleep;
/// use pin_project_lite::pin_project;
///
/// pin_project! {
/// struct HasSleep {
/// #[pin]
/// sleep: Sleep,
/// }
/// }
///
/// impl Future for HasSleep {
/// type Output = ();
///
/// fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
/// self.project().sleep.poll(cx)
/// }
/// }
/// ```
///
/// [`select!`]: ../macro.select.html
/// [`tokio::pin!`]: ../macro.pin.html
// Alias for old name in 0.2
#[cfg_attr(docsrs, doc(alias = "Delay"))]
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Sleep {
inner: Inner,
// The link between the `Sleep` instance and the timer that drives it.
#[pin]
entry: TimerEntry,
}
}
cfg_trace! {
#[derive(Debug)]
struct Inner {
deadline: Instant,
ctx: trace::AsyncOpTracingCtx,
time_source: ClockTime,
}
}
cfg_not_trace! {
#[derive(Debug)]
struct Inner {
deadline: Instant,
}
}
impl Sleep {
#[cfg_attr(not(all(tokio_unstable, feature = "tracing")), allow(unused_variables))]
pub(crate) fn new_timeout(
deadline: Instant,
location: Option<&'static Location<'static>>,
) -> Sleep {
let handle = Handle::current();
let entry = TimerEntry::new(&handle, deadline);
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = {
let time_source = handle.time_source().clone();
let deadline_tick = time_source.deadline_to_tick(deadline);
let duration = deadline_tick.saturating_sub(time_source.now());
let location = location.expect("should have location if tracing");
let resource_span = tracing::trace_span!(
"runtime.resource",
concrete_type = "Sleep",
kind = "timer",
loc.file = location.file(),
loc.line = location.line(),
loc.col = location.column(),
);
let async_op_span = resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
duration = duration,
duration.unit = "ms",
duration.op = "override",
);
tracing::trace_span!("runtime.resource.async_op", source = "Sleep::new_timeout")
});
let async_op_poll_span =
async_op_span.in_scope(|| tracing::trace_span!("runtime.resource.async_op.poll"));
let ctx = trace::AsyncOpTracingCtx {
async_op_span,
async_op_poll_span,
resource_span,
};
Inner {
deadline,
ctx,
time_source,
}
};
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = Inner { deadline };
Sleep { inner, entry }
}
pub(crate) fn far_future(location: Option<&'static Location<'static>>) -> Sleep {
Self::new_timeout(Instant::far_future(), location)
}
/// Returns the instant at which the future will complete.
pub fn deadline(&self) -> Instant {
self.inner.deadline
}
/// Returns `true` if `Sleep` has elapsed.
///
/// A `Sleep` instance is elapsed when the requested duration has elapsed.
pub fn is_elapsed(&self) -> bool {
self.entry.is_elapsed()
}
/// Resets the `Sleep` instance to a new deadline.
///
/// Calling this function allows changing the instant at which the `Sleep`
/// future completes without having to create new associated state.
///
/// This function can be called both before and after the future has
/// completed.
///
/// To call this method, you will usually combine the call with
/// [`Pin::as_mut`], which lets you call the method without consuming the
/// `Sleep` itself.
///
/// # Example
///
/// ```
/// use tokio::time::{Duration, Instant};
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// let sleep = tokio::time::sleep(Duration::from_millis(10));
/// tokio::pin!(sleep);
///
/// sleep.as_mut().reset(Instant::now() + Duration::from_millis(20));
/// # }
/// ```
///
/// See also the top-level examples.
///
/// [`Pin::as_mut`]: fn@std::pin::Pin::as_mut
pub fn reset(self: Pin<&mut Self>, deadline: Instant) {
self.reset_inner(deadline)
}
fn reset_inner(self: Pin<&mut Self>, deadline: Instant) {
let me = self.project();
me.entry.reset(deadline);
(*me.inner).deadline = deadline;
#[cfg(all(tokio_unstable, feature = "tracing"))]
{
let _resource_enter = me.inner.ctx.resource_span.enter();
me.inner.ctx.async_op_span =
tracing::trace_span!("runtime.resource.async_op", source = "Sleep::reset");
let _async_op_enter = me.inner.ctx.async_op_span.enter();
me.inner.ctx.async_op_poll_span =
tracing::trace_span!("runtime.resource.async_op.poll");
let duration = {
let now = me.inner.time_source.now();
let deadline_tick = me.inner.time_source.deadline_to_tick(deadline);
deadline_tick.saturating_sub(now)
};
tracing::trace!(
target: "runtime::resource::state_update",
duration = duration,
duration.unit = "ms",
duration.op = "override",
);
}
}
fn poll_elapsed(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Result<(), Error>> {
let me = self.project();
// Keep track of task budget
#[cfg(all(tokio_unstable, feature = "tracing"))]
let coop = ready!(trace_poll_op!(
"poll_elapsed",
crate::coop::poll_proceed(cx),
));
#[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
let coop = ready!(crate::coop::poll_proceed(cx));
let result = me.entry.poll_elapsed(cx).map(move |r| {
coop.made_progress();
r
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
return trace_poll_op!("poll_elapsed", result);
#[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
return result;
}
}
impl Future for Sleep {
type Output = ();
// `poll_elapsed` can return an error in two cases:
//
// - AtCapacity: this is a pathological case where far too many
// sleep instances have been scheduled.
// - Shutdown: No timer has been setup, which is a mis-use error.
//
// Both cases are extremely rare, and pretty accurately fit into
// "logic errors", so we just panic in this case. A user couldn't
// really do much better if we passed the error onwards.
fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let _res_span = self.inner.ctx.resource_span.clone().entered();
#[cfg(all(tokio_unstable, feature = "tracing"))]
let _ao_span = self.inner.ctx.async_op_span.clone().entered();
#[cfg(all(tokio_unstable, feature = "tracing"))]
let _ao_poll_span = self.inner.ctx.async_op_poll_span.clone().entered();
match ready!(self.as_mut().poll_elapsed(cx)) {
Ok(()) => Poll::Ready(()),
Err(e) => panic!("timer error: {}", e),
}
}
}