1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use crate::sync::rwlock::owned_read_guard::OwnedRwLockReadGuard;
use crate::sync::rwlock::owned_write_guard_mapped::OwnedRwLockMappedWriteGuard;
use crate::sync::rwlock::RwLock;
use std::fmt;
use std::marker::PhantomData;
use std::mem::{self, ManuallyDrop};
use std::ops;
use std::sync::Arc;

/// Owned RAII structure used to release the exclusive write access of a lock when
/// dropped.
///
/// This structure is created by the [`write_owned`] method
/// on [`RwLock`].
///
/// [`write_owned`]: method@crate::sync::RwLock::write_owned
/// [`RwLock`]: struct@crate::sync::RwLock
pub struct OwnedRwLockWriteGuard<T: ?Sized> {
    #[cfg(all(tokio_unstable, feature = "tracing"))]
    pub(super) resource_span: tracing::Span,
    pub(super) permits_acquired: u32,
    // ManuallyDrop allows us to destructure into this field without running the destructor.
    pub(super) lock: ManuallyDrop<Arc<RwLock<T>>>,
    pub(super) data: *mut T,
    pub(super) _p: PhantomData<T>,
}

impl<T: ?Sized> OwnedRwLockWriteGuard<T> {
    /// Makes a new [`OwnedRwLockMappedWriteGuard`] for a component of the locked
    /// data.
    ///
    /// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in
    /// already locked the data.
    ///
    /// This is an associated function that needs to be used as
    /// `OwnedRwLockWriteGuard::map(..)`. A method would interfere with methods
    /// of the same name on the contents of the locked data.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(Foo(1)));
    ///
    /// {
    ///     let lock = Arc::clone(&lock);
    ///     let mut mapped = OwnedRwLockWriteGuard::map(lock.write_owned().await, |f| &mut f.0);
    ///     *mapped = 2;
    /// }
    ///
    /// assert_eq!(Foo(2), *lock.read().await);
    /// # }
    /// ```
    #[inline]
    pub fn map<F, U: ?Sized>(mut this: Self, f: F) -> OwnedRwLockMappedWriteGuard<T, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        let data = f(&mut *this) as *mut U;
        let lock = unsafe { ManuallyDrop::take(&mut this.lock) };
        let permits_acquired = this.permits_acquired;
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let resource_span = this.resource_span.clone();
        // NB: Forget to avoid drop impl from being called.
        mem::forget(this);

        OwnedRwLockMappedWriteGuard {
            permits_acquired,
            lock: ManuallyDrop::new(lock),
            data,
            _p: PhantomData,
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span,
        }
    }

    /// Attempts to make  a new [`OwnedRwLockMappedWriteGuard`] for a component
    /// of the locked data. The original guard is returned if the closure
    /// returns `None`.
    ///
    /// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in
    /// already locked the data.
    ///
    /// This is an associated function that needs to be
    /// used as `OwnedRwLockWriteGuard::try_map(...)`. A method would interfere
    /// with methods of the same name on the contents of the locked data.
    ///
    /// [`RwLockMappedWriteGuard`]: struct@crate::sync::RwLockMappedWriteGuard
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(Foo(1)));
    ///
    /// {
    ///     let guard = Arc::clone(&lock).write_owned().await;
    ///     let mut guard = OwnedRwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail");
    ///     *guard = 2;
    /// }
    ///
    /// assert_eq!(Foo(2), *lock.read().await);
    /// # }
    /// ```
    #[inline]
    pub fn try_map<F, U: ?Sized>(
        mut this: Self,
        f: F,
    ) -> Result<OwnedRwLockMappedWriteGuard<T, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        let data = match f(&mut *this) {
            Some(data) => data as *mut U,
            None => return Err(this),
        };
        let permits_acquired = this.permits_acquired;
        let lock = unsafe { ManuallyDrop::take(&mut this.lock) };
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let resource_span = this.resource_span.clone();

        // NB: Forget to avoid drop impl from being called.
        mem::forget(this);

        Ok(OwnedRwLockMappedWriteGuard {
            permits_acquired,
            lock: ManuallyDrop::new(lock),
            data,
            _p: PhantomData,
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span,
        })
    }

    /// Converts this `OwnedRwLockWriteGuard` into an
    /// `OwnedRwLockMappedWriteGuard`. This method can be used to store a
    /// non-mapped guard in a struct field that expects a mapped guard.
    ///
    /// This is equivalent to calling `OwnedRwLockWriteGuard::map(guard, |me| me)`.
    #[inline]
    pub fn into_mapped(this: Self) -> OwnedRwLockMappedWriteGuard<T> {
        Self::map(this, |me| me)
    }

    /// Atomically downgrades a write lock into a read lock without allowing
    /// any writers to take exclusive access of the lock in the meantime.
    ///
    /// **Note:** This won't *necessarily* allow any additional readers to acquire
    /// locks, since [`RwLock`] is fair and it is possible that a writer is next
    /// in line.
    ///
    /// Returns an RAII guard which will drop this read access of the `RwLock`
    /// when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::sync::RwLock;
    /// # use std::sync::Arc;
    /// #
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(1));
    ///
    /// let n = lock.clone().write_owned().await;
    ///
    /// let cloned_lock = lock.clone();
    /// let handle = tokio::spawn(async move {
    ///     *cloned_lock.write_owned().await = 2;
    /// });
    ///
    /// let n = n.downgrade();
    /// assert_eq!(*n, 1, "downgrade is atomic");
    ///
    /// drop(n);
    /// handle.await.unwrap();
    /// assert_eq!(*lock.read().await, 2, "second writer obtained write lock");
    /// # }
    /// ```
    pub fn downgrade(mut self) -> OwnedRwLockReadGuard<T> {
        let lock = unsafe { ManuallyDrop::take(&mut self.lock) };
        let data = self.data;
        let to_release = (self.permits_acquired - 1) as usize;

        // Release all but one of the permits held by the write guard
        lock.s.release(to_release);
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        self.resource_span.in_scope(|| {
            tracing::trace!(
            target: "runtime::resource::state_update",
            write_locked = false,
            write_locked.op = "override",
            )
        });

        #[cfg(all(tokio_unstable, feature = "tracing"))]
        self.resource_span.in_scope(|| {
            tracing::trace!(
            target: "runtime::resource::state_update",
            current_readers = 1,
            current_readers.op = "add",
            )
        });

        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let resource_span = self.resource_span.clone();
        // NB: Forget to avoid drop impl from being called.
        mem::forget(self);

        OwnedRwLockReadGuard {
            lock: ManuallyDrop::new(lock),
            data,
            _p: PhantomData,
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span,
        }
    }
}

impl<T: ?Sized> ops::Deref for OwnedRwLockWriteGuard<T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.data }
    }
}

impl<T: ?Sized> ops::DerefMut for OwnedRwLockWriteGuard<T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data }
    }
}

impl<T: ?Sized> fmt::Debug for OwnedRwLockWriteGuard<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized> fmt::Display for OwnedRwLockWriteGuard<T>
where
    T: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: ?Sized> Drop for OwnedRwLockWriteGuard<T> {
    fn drop(&mut self) {
        self.lock.s.release(self.permits_acquired as usize);
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        self.resource_span.in_scope(|| {
            tracing::trace!(
            target: "runtime::resource::state_update",
            write_locked = false,
            write_locked.op = "override",
            )
        });
        unsafe { ManuallyDrop::drop(&mut self.lock) };
    }
}