1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
use crate::io::driver::{Handle, Interest, ReadyEvent, Registration};
use mio::unix::SourceFd;
use std::io;
use std::os::unix::io::{AsRawFd, RawFd};
use std::{task::Context, task::Poll};
/// Associates an IO object backed by a Unix file descriptor with the tokio
/// reactor, allowing for readiness to be polled. The file descriptor must be of
/// a type that can be used with the OS polling facilities (ie, `poll`, `epoll`,
/// `kqueue`, etc), such as a network socket or pipe, and the file descriptor
/// must have the nonblocking mode set to true.
///
/// Creating an AsyncFd registers the file descriptor with the current tokio
/// Reactor, allowing you to directly await the file descriptor being readable
/// or writable. Once registered, the file descriptor remains registered until
/// the AsyncFd is dropped.
///
/// The AsyncFd takes ownership of an arbitrary object to represent the IO
/// object. It is intended that this object will handle closing the file
/// descriptor when it is dropped, avoiding resource leaks and ensuring that the
/// AsyncFd can clean up the registration before closing the file descriptor.
/// The [`AsyncFd::into_inner`] function can be used to extract the inner object
/// to retake control from the tokio IO reactor.
///
/// The inner object is required to implement [`AsRawFd`]. This file descriptor
/// must not change while [`AsyncFd`] owns the inner object, i.e. the
/// [`AsRawFd::as_raw_fd`] method on the inner type must always return the same
/// file descriptor when called multiple times. Failure to uphold this results
/// in unspecified behavior in the IO driver, which may include breaking
/// notifications for other sockets/etc.
///
/// Polling for readiness is done by calling the async functions [`readable`]
/// and [`writable`]. These functions complete when the associated readiness
/// condition is observed. Any number of tasks can query the same `AsyncFd` in
/// parallel, on the same or different conditions.
///
/// On some platforms, the readiness detecting mechanism relies on
/// edge-triggered notifications. This means that the OS will only notify Tokio
/// when the file descriptor transitions from not-ready to ready. For this to
/// work you should first try to read or write and only poll for readiness
/// if that fails with an error of [`std::io::ErrorKind::WouldBlock`].
///
/// Tokio internally tracks when it has received a ready notification, and when
/// readiness checking functions like [`readable`] and [`writable`] are called,
/// if the readiness flag is set, these async functions will complete
/// immediately. This however does mean that it is critical to ensure that this
/// ready flag is cleared when (and only when) the file descriptor ceases to be
/// ready. The [`AsyncFdReadyGuard`] returned from readiness checking functions
/// serves this function; after calling a readiness-checking async function,
/// you must use this [`AsyncFdReadyGuard`] to signal to tokio whether the file
/// descriptor is no longer in a ready state.
///
/// ## Use with to a poll-based API
///
/// In some cases it may be desirable to use `AsyncFd` from APIs similar to
/// [`TcpStream::poll_read_ready`]. The [`AsyncFd::poll_read_ready`] and
/// [`AsyncFd::poll_write_ready`] functions are provided for this purpose.
/// Because these functions don't create a future to hold their state, they have
/// the limitation that only one task can wait on each direction (read or write)
/// at a time.
///
/// # Examples
///
/// This example shows how to turn [`std::net::TcpStream`] asynchronous using
/// `AsyncFd`. It implements `read` as an async fn, and `AsyncWrite` as a trait
/// to show how to implement both approaches.
///
/// ```no_run
/// use futures::ready;
/// use std::io::{self, Read, Write};
/// use std::net::TcpStream;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
/// use tokio::io::AsyncWrite;
/// use tokio::io::unix::AsyncFd;
///
/// pub struct AsyncTcpStream {
/// inner: AsyncFd<TcpStream>,
/// }
///
/// impl AsyncTcpStream {
/// pub fn new(tcp: TcpStream) -> io::Result<Self> {
/// tcp.set_nonblocking(true)?;
/// Ok(Self {
/// inner: AsyncFd::new(tcp)?,
/// })
/// }
///
/// pub async fn read(&self, out: &mut [u8]) -> io::Result<usize> {
/// loop {
/// let mut guard = self.inner.readable().await?;
///
/// match guard.try_io(|inner| inner.get_ref().read(out)) {
/// Ok(result) => return result,
/// Err(_would_block) => continue,
/// }
/// }
/// }
/// }
///
/// impl AsyncWrite for AsyncTcpStream {
/// fn poll_write(
/// self: Pin<&mut Self>,
/// cx: &mut Context<'_>,
/// buf: &[u8]
/// ) -> Poll<io::Result<usize>> {
/// loop {
/// let mut guard = ready!(self.inner.poll_write_ready(cx))?;
///
/// match guard.try_io(|inner| inner.get_ref().write(buf)) {
/// Ok(result) => return Poll::Ready(result),
/// Err(_would_block) => continue,
/// }
/// }
/// }
///
/// fn poll_flush(
/// self: Pin<&mut Self>,
/// cx: &mut Context<'_>,
/// ) -> Poll<io::Result<()>> {
/// // tcp flush is a no-op
/// Poll::Ready(Ok(()))
/// }
///
/// fn poll_shutdown(
/// self: Pin<&mut Self>,
/// cx: &mut Context<'_>,
/// ) -> Poll<io::Result<()>> {
/// self.inner.get_ref().shutdown(std::net::Shutdown::Write)?;
/// Poll::Ready(Ok(()))
/// }
/// }
/// ```
///
/// [`readable`]: method@Self::readable
/// [`writable`]: method@Self::writable
/// [`AsyncFdReadyGuard`]: struct@self::AsyncFdReadyGuard
/// [`TcpStream::poll_read_ready`]: struct@crate::net::TcpStream
pub struct AsyncFd<T: AsRawFd> {
registration: Registration,
inner: Option<T>,
}
/// Represents an IO-ready event detected on a particular file descriptor that
/// has not yet been acknowledged. This is a `must_use` structure to help ensure
/// that you do not forget to explicitly clear (or not clear) the event.
///
/// This type exposes an immutable reference to the underlying IO object.
#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
pub struct AsyncFdReadyGuard<'a, T: AsRawFd> {
async_fd: &'a AsyncFd<T>,
event: Option<ReadyEvent>,
}
/// Represents an IO-ready event detected on a particular file descriptor that
/// has not yet been acknowledged. This is a `must_use` structure to help ensure
/// that you do not forget to explicitly clear (or not clear) the event.
///
/// This type exposes a mutable reference to the underlying IO object.
#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
pub struct AsyncFdReadyMutGuard<'a, T: AsRawFd> {
async_fd: &'a mut AsyncFd<T>,
event: Option<ReadyEvent>,
}
const ALL_INTEREST: Interest = Interest::READABLE.add(Interest::WRITABLE);
impl<T: AsRawFd> AsyncFd<T> {
#[inline]
/// Creates an AsyncFd backed by (and taking ownership of) an object
/// implementing [`AsRawFd`]. The backing file descriptor is cached at the
/// time of creation.
///
/// This method must be called in the context of a tokio runtime.
pub fn new(inner: T) -> io::Result<Self>
where
T: AsRawFd,
{
Self::with_interest(inner, ALL_INTEREST)
}
#[inline]
/// Creates new instance as `new` with additional ability to customize interest,
/// allowing to specify whether file descriptor will be polled for read, write or both.
pub fn with_interest(inner: T, interest: Interest) -> io::Result<Self>
where
T: AsRawFd,
{
Self::new_with_handle_and_interest(inner, Handle::current(), interest)
}
pub(crate) fn new_with_handle_and_interest(
inner: T,
handle: Handle,
interest: Interest,
) -> io::Result<Self> {
let fd = inner.as_raw_fd();
let registration =
Registration::new_with_interest_and_handle(&mut SourceFd(&fd), interest, handle)?;
Ok(AsyncFd {
registration,
inner: Some(inner),
})
}
/// Returns a shared reference to the backing object of this [`AsyncFd`].
#[inline]
pub fn get_ref(&self) -> &T {
self.inner.as_ref().unwrap()
}
/// Returns a mutable reference to the backing object of this [`AsyncFd`].
#[inline]
pub fn get_mut(&mut self) -> &mut T {
self.inner.as_mut().unwrap()
}
fn take_inner(&mut self) -> Option<T> {
let fd = self.inner.as_ref().map(AsRawFd::as_raw_fd);
if let Some(fd) = fd {
let _ = self.registration.deregister(&mut SourceFd(&fd));
}
self.inner.take()
}
/// Deregisters this file descriptor and returns ownership of the backing
/// object.
pub fn into_inner(mut self) -> T {
self.take_inner().unwrap()
}
/// Polls for read readiness.
///
/// If the file descriptor is not currently ready for reading, this method
/// will store a clone of the [`Waker`] from the provided [`Context`]. When the
/// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
///
/// Note that on multiple calls to [`poll_read_ready`] or
/// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
/// most recent call is scheduled to receive a wakeup. (However,
/// [`poll_write_ready`] retains a second, independent waker).
///
/// This method is intended for cases where creating and pinning a future
/// via [`readable`] is not feasible. Where possible, using [`readable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// This method takes `&self`, so it is possible to call this method
/// concurrently with other methods on this struct. This method only
/// provides shared access to the inner IO resource when handling the
/// [`AsyncFdReadyGuard`].
///
/// [`poll_read_ready`]: method@Self::poll_read_ready
/// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
/// [`poll_write_ready`]: method@Self::poll_write_ready
/// [`readable`]: method@Self::readable
/// [`Context`]: struct@std::task::Context
/// [`Waker`]: struct@std::task::Waker
/// [`Waker::wake`]: method@std::task::Waker::wake
pub fn poll_read_ready<'a>(
&'a self,
cx: &mut Context<'_>,
) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
let event = ready!(self.registration.poll_read_ready(cx))?;
Ok(AsyncFdReadyGuard {
async_fd: self,
event: Some(event),
})
.into()
}
/// Polls for read readiness.
///
/// If the file descriptor is not currently ready for reading, this method
/// will store a clone of the [`Waker`] from the provided [`Context`]. When the
/// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
///
/// Note that on multiple calls to [`poll_read_ready`] or
/// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
/// most recent call is scheduled to receive a wakeup. (However,
/// [`poll_write_ready`] retains a second, independent waker).
///
/// This method is intended for cases where creating and pinning a future
/// via [`readable`] is not feasible. Where possible, using [`readable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// This method takes `&mut self`, so it is possible to access the inner IO
/// resource mutably when handling the [`AsyncFdReadyMutGuard`].
///
/// [`poll_read_ready`]: method@Self::poll_read_ready
/// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
/// [`poll_write_ready`]: method@Self::poll_write_ready
/// [`readable`]: method@Self::readable
/// [`Context`]: struct@std::task::Context
/// [`Waker`]: struct@std::task::Waker
/// [`Waker::wake`]: method@std::task::Waker::wake
pub fn poll_read_ready_mut<'a>(
&'a mut self,
cx: &mut Context<'_>,
) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
let event = ready!(self.registration.poll_read_ready(cx))?;
Ok(AsyncFdReadyMutGuard {
async_fd: self,
event: Some(event),
})
.into()
}
/// Polls for write readiness.
///
/// If the file descriptor is not currently ready for writing, this method
/// will store a clone of the [`Waker`] from the provided [`Context`]. When the
/// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
///
/// Note that on multiple calls to [`poll_write_ready`] or
/// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
/// most recent call is scheduled to receive a wakeup. (However,
/// [`poll_read_ready`] retains a second, independent waker).
///
/// This method is intended for cases where creating and pinning a future
/// via [`writable`] is not feasible. Where possible, using [`writable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// This method takes `&self`, so it is possible to call this method
/// concurrently with other methods on this struct. This method only
/// provides shared access to the inner IO resource when handling the
/// [`AsyncFdReadyGuard`].
///
/// [`poll_read_ready`]: method@Self::poll_read_ready
/// [`poll_write_ready`]: method@Self::poll_write_ready
/// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
/// [`writable`]: method@Self::readable
/// [`Context`]: struct@std::task::Context
/// [`Waker`]: struct@std::task::Waker
/// [`Waker::wake`]: method@std::task::Waker::wake
pub fn poll_write_ready<'a>(
&'a self,
cx: &mut Context<'_>,
) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
let event = ready!(self.registration.poll_write_ready(cx))?;
Ok(AsyncFdReadyGuard {
async_fd: self,
event: Some(event),
})
.into()
}
/// Polls for write readiness.
///
/// If the file descriptor is not currently ready for writing, this method
/// will store a clone of the [`Waker`] from the provided [`Context`]. When the
/// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
///
/// Note that on multiple calls to [`poll_write_ready`] or
/// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
/// most recent call is scheduled to receive a wakeup. (However,
/// [`poll_read_ready`] retains a second, independent waker).
///
/// This method is intended for cases where creating and pinning a future
/// via [`writable`] is not feasible. Where possible, using [`writable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// This method takes `&mut self`, so it is possible to access the inner IO
/// resource mutably when handling the [`AsyncFdReadyMutGuard`].
///
/// [`poll_read_ready`]: method@Self::poll_read_ready
/// [`poll_write_ready`]: method@Self::poll_write_ready
/// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
/// [`writable`]: method@Self::readable
/// [`Context`]: struct@std::task::Context
/// [`Waker`]: struct@std::task::Waker
/// [`Waker::wake`]: method@std::task::Waker::wake
pub fn poll_write_ready_mut<'a>(
&'a mut self,
cx: &mut Context<'_>,
) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
let event = ready!(self.registration.poll_write_ready(cx))?;
Ok(AsyncFdReadyMutGuard {
async_fd: self,
event: Some(event),
})
.into()
}
async fn readiness(&self, interest: Interest) -> io::Result<AsyncFdReadyGuard<'_, T>> {
let event = self.registration.readiness(interest).await?;
Ok(AsyncFdReadyGuard {
async_fd: self,
event: Some(event),
})
}
async fn readiness_mut(
&mut self,
interest: Interest,
) -> io::Result<AsyncFdReadyMutGuard<'_, T>> {
let event = self.registration.readiness(interest).await?;
Ok(AsyncFdReadyMutGuard {
async_fd: self,
event: Some(event),
})
}
/// Waits for the file descriptor to become readable, returning a
/// [`AsyncFdReadyGuard`] that must be dropped to resume read-readiness
/// polling.
///
/// This method takes `&self`, so it is possible to call this method
/// concurrently with other methods on this struct. This method only
/// provides shared access to the inner IO resource when handling the
/// [`AsyncFdReadyGuard`].
#[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
pub async fn readable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
self.readiness(Interest::READABLE).await
}
/// Waits for the file descriptor to become readable, returning a
/// [`AsyncFdReadyMutGuard`] that must be dropped to resume read-readiness
/// polling.
///
/// This method takes `&mut self`, so it is possible to access the inner IO
/// resource mutably when handling the [`AsyncFdReadyMutGuard`].
#[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
pub async fn readable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
self.readiness_mut(Interest::READABLE).await
}
/// Waits for the file descriptor to become writable, returning a
/// [`AsyncFdReadyGuard`] that must be dropped to resume write-readiness
/// polling.
///
/// This method takes `&self`, so it is possible to call this method
/// concurrently with other methods on this struct. This method only
/// provides shared access to the inner IO resource when handling the
/// [`AsyncFdReadyGuard`].
#[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
pub async fn writable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
self.readiness(Interest::WRITABLE).await
}
/// Waits for the file descriptor to become writable, returning a
/// [`AsyncFdReadyMutGuard`] that must be dropped to resume write-readiness
/// polling.
///
/// This method takes `&mut self`, so it is possible to access the inner IO
/// resource mutably when handling the [`AsyncFdReadyMutGuard`].
#[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
pub async fn writable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
self.readiness_mut(Interest::WRITABLE).await
}
}
impl<T: AsRawFd> AsRawFd for AsyncFd<T> {
fn as_raw_fd(&self) -> RawFd {
self.inner.as_ref().unwrap().as_raw_fd()
}
}
impl<T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFd<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("AsyncFd")
.field("inner", &self.inner)
.finish()
}
}
impl<T: AsRawFd> Drop for AsyncFd<T> {
fn drop(&mut self) {
let _ = self.take_inner();
}
}
impl<'a, Inner: AsRawFd> AsyncFdReadyGuard<'a, Inner> {
/// Indicates to tokio that the file descriptor is no longer ready. The
/// internal readiness flag will be cleared, and tokio will wait for the
/// next edge-triggered readiness notification from the OS.
///
/// It is critical that this function not be called unless your code
/// _actually observes_ that the file descriptor is _not_ ready. Do not call
/// it simply because, for example, a read succeeded; it should be called
/// when a read is observed to block.
///
/// [`drop`]: method@std::mem::drop
pub fn clear_ready(&mut self) {
if let Some(event) = self.event.take() {
self.async_fd.registration.clear_readiness(event);
}
}
/// This method should be invoked when you intentionally want to keep the
/// ready flag asserted.
///
/// While this function is itself a no-op, it satisfies the `#[must_use]`
/// constraint on the [`AsyncFdReadyGuard`] type.
pub fn retain_ready(&mut self) {
// no-op
}
/// Performs the provided IO operation.
///
/// If `f` returns a [`WouldBlock`] error, the readiness state associated
/// with this file descriptor is cleared, and the method returns
/// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
/// `AsyncFd` again when this happens.
///
/// This method helps ensure that the readiness state of the underlying file
/// descriptor remains in sync with the tokio-side readiness state, by
/// clearing the tokio-side state only when a [`WouldBlock`] condition
/// occurs. It is the responsibility of the caller to ensure that `f`
/// returns [`WouldBlock`] only if the file descriptor that originated this
/// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
/// create this `AsyncFdReadyGuard`.
///
/// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
// Alias for old name in 0.x
#[cfg_attr(docsrs, doc(alias = "with_io"))]
pub fn try_io<R>(
&mut self,
f: impl FnOnce(&'a AsyncFd<Inner>) -> io::Result<R>,
) -> Result<io::Result<R>, TryIoError> {
let result = f(self.async_fd);
if let Err(e) = result.as_ref() {
if e.kind() == io::ErrorKind::WouldBlock {
self.clear_ready();
}
}
match result {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => Err(TryIoError(())),
result => Ok(result),
}
}
/// Returns a shared reference to the inner [`AsyncFd`].
pub fn get_ref(&self) -> &'a AsyncFd<Inner> {
self.async_fd
}
/// Returns a shared reference to the backing object of the inner [`AsyncFd`].
pub fn get_inner(&self) -> &'a Inner {
self.get_ref().get_ref()
}
}
impl<'a, Inner: AsRawFd> AsyncFdReadyMutGuard<'a, Inner> {
/// Indicates to tokio that the file descriptor is no longer ready. The
/// internal readiness flag will be cleared, and tokio will wait for the
/// next edge-triggered readiness notification from the OS.
///
/// It is critical that this function not be called unless your code
/// _actually observes_ that the file descriptor is _not_ ready. Do not call
/// it simply because, for example, a read succeeded; it should be called
/// when a read is observed to block.
///
/// [`drop`]: method@std::mem::drop
pub fn clear_ready(&mut self) {
if let Some(event) = self.event.take() {
self.async_fd.registration.clear_readiness(event);
}
}
/// This method should be invoked when you intentionally want to keep the
/// ready flag asserted.
///
/// While this function is itself a no-op, it satisfies the `#[must_use]`
/// constraint on the [`AsyncFdReadyGuard`] type.
pub fn retain_ready(&mut self) {
// no-op
}
/// Performs the provided IO operation.
///
/// If `f` returns a [`WouldBlock`] error, the readiness state associated
/// with this file descriptor is cleared, and the method returns
/// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
/// `AsyncFd` again when this happens.
///
/// This method helps ensure that the readiness state of the underlying file
/// descriptor remains in sync with the tokio-side readiness state, by
/// clearing the tokio-side state only when a [`WouldBlock`] condition
/// occurs. It is the responsibility of the caller to ensure that `f`
/// returns [`WouldBlock`] only if the file descriptor that originated this
/// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
/// create this `AsyncFdReadyGuard`.
///
/// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
pub fn try_io<R>(
&mut self,
f: impl FnOnce(&mut AsyncFd<Inner>) -> io::Result<R>,
) -> Result<io::Result<R>, TryIoError> {
let result = f(self.async_fd);
if let Err(e) = result.as_ref() {
if e.kind() == io::ErrorKind::WouldBlock {
self.clear_ready();
}
}
match result {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => Err(TryIoError(())),
result => Ok(result),
}
}
/// Returns a shared reference to the inner [`AsyncFd`].
pub fn get_ref(&self) -> &AsyncFd<Inner> {
self.async_fd
}
/// Returns a mutable reference to the inner [`AsyncFd`].
pub fn get_mut(&mut self) -> &mut AsyncFd<Inner> {
self.async_fd
}
/// Returns a shared reference to the backing object of the inner [`AsyncFd`].
pub fn get_inner(&self) -> &Inner {
self.get_ref().get_ref()
}
/// Returns a mutable reference to the backing object of the inner [`AsyncFd`].
pub fn get_inner_mut(&mut self) -> &mut Inner {
self.get_mut().get_mut()
}
}
impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyGuard<'a, T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ReadyGuard")
.field("async_fd", &self.async_fd)
.finish()
}
}
impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyMutGuard<'a, T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("MutReadyGuard")
.field("async_fd", &self.async_fd)
.finish()
}
}
/// The error type returned by [`try_io`].
///
/// This error indicates that the IO resource returned a [`WouldBlock`] error.
///
/// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
/// [`try_io`]: method@AsyncFdReadyGuard::try_io
#[derive(Debug)]
pub struct TryIoError(());